19EC3551 - Antenna Analysis and Synthesis Lab

Course Code	19EC3551	Year	III	Semester	I
Course	Program Core	Branch	ECE	Course Type	Lab
Category					
Credits	3	L-T-P	0-0-3	Prerequisites	EMW, AA&S
Continuous	25	Semester	50	Total Marks:	75
Internal		End			
Evaluation:		Evaluation:			

Course Outcomes						
Upon	Upon successful completion of the course, the student will be able to					
CO1	Interpret the antenna software simulation tools L2					
CO2	Design and Simulate antennas used in wireless communications for different frequency					
	band and obtain radiation characteristics L6					
CO3	Experiment with a pyramidal Horn antenna and waveguide and its radiation					
	characteristics L3					
CO4	Construct a linear array and synthesize its radiation characteristics-L3					

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)														
Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation														
* - Average value indicates course correlation strength with mapped PO														
COs	PO	PS	PS											
COs	1	2	3	4	5	6	7	8	9	10	11	12	01	O2
CO1	1	1	2	2	2								2	1
CO2	3	3	3	3	3								3	2
CO3	2	2	2	2	3								3	2
CO4	2	3	3	3	3								3	2
Averag e* (Roun ded to nearest integer	2	2	3	3	3								3	2

Syllabus		
S.No.	Name of the Experiment	Mapped CO
1	Introduction to Simulation software tools	CO1
2	Design a half wave dipole for a frequency of 600MHz and determine its radiation pattern, reflection coefficient, VSWR	CO2
3	Design a biconical antenna for a frequency of 600MHz and determine its radiation pattern, reflection coefficient, VSWR	CO2
4	Measurement of radiation pattern of a pyramidal Horn antenna	CO3
5	Design a rectangular microstrip antenna and obtain its radiation characteristics using simulation	CO2
6	Design a Circular microstrip antenna and obtain its radiation characteristics using simulation	CO2
7	Design a square loop antenna for a frequency of 6GHz and obtain its radiation pattern, reflection coefficient, VSWR	CO2
8	Model a rectangular Waveguide and obtain its radiation characteristics	CO3
9	For a linear array of elements obtain the radiation patterns	CO4
10	Synthesize a linear array to generate sector radiation pattern	CO4

Learning Resources

Text Books

1. Antennas and Wave Propagation – J.D. Kraus, R.J. Marhefka and Ahmad S. Khan, TMH, New Delhi, 4th ed., (Special Indian Edition), 2010.

Reference Books

- 1. Antenna Theory C.A. Balanis, John Wiley & Sons, 3rd Ed., 2005.
- 2. Antenna Engineering Handbook John Leonidas Volakis, 3rd edition, 2007

e- Resources & other digital material

- 1. http://anlage.umd.edu/HFSSv10UserGuide.pdf
- 2. https://www.youtube.com/watch?v=kUDICVOPlvY